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Abstract

Given a hypergraph G, we introduce a Grassmann algebra over the vertex
set and show that a class of Grassmann integrals permits an expansion
in terms of spanning hyperforests. Special cases provide the generating
functions for rooted and unrooted spanning (hyper)forests and spanning
(hyper)trees. All these results are generalizations of Kirchhoff’s matrix-tree
theorem. Furthermore, we show that the class of integrals describing unrooted
spanning (hyper)forests is induced by a theory with an underlying OSP(1|2)
supersymmetry.

PACS numbers: 05.50.+q, 02.10.0x, 11.10.Hi, 11.10.Kk

1. Introduction

Kirchhoff’s matrix-tree theorem [1-3] and its generalizations [4—6], which express the
generating polynomials of spanning trees and rooted spanning forests in a graph as
determinants associated with the graph’s Laplacian matrix, play a central role in electrical
circuit theory [7, 8] and in certain exactly-soluble models in statistical mechanics [9, 10].

Like all determinants, those arising in Kirchhoff’s theorem can be rewritten as Gaussian
integrals over fermionic (Grassmann) variables. Indeed, the use of Grassmann—Berezin
calculus [11] has provided an interesting short-cut toward the classical matrix-tree result as
well as generalizations thereof [6, 12]. For instance, Abdesselam [6] has obtained in a simple
way the recent pfaffian-tree theorem [13—15] and has generalized it to a hyperpfaffian-cactus
theorem.

In a recent letter [12] we proved a far-reaching generalization of Kirchhoff’s theorem,
in which a large class of combinatorial objects are represented by suitable non-Gaussian
Grassmann integrals. In particular, we showed how the generating function of spanning
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forests in a graph, which arises as the ¢ — 0 limit of the partition function of the g-state Potts
model [16-19], can be represented as a Grassmann integral involving a quadratic (Gaussian)
term together with a special nearest-neighbor four-fermion interaction. Furthermore, this
fermionic model possesses an OSP(1]2) supersymmetry.

This fermionic formulation is also well suited to the use of standard field-theoretic
machinery. For example, in [12] we obtained the renormalization-group flow near the
spanning-tree (free-field) fixed point for the spanning-forest model on the square lattice,
and in [20] this was extended to the triangular lattice.

In the present paper, we would like to extend the fermionic representation of spanning
forests from graphs to hypergraphs. Hypergraphs are a generalization of graphs in which
the edges (now called hyperedges) can connect more than two vertices [21-23]. In physics,
hypergraphs arise quite naturally whenever one studies a k-body interaction with k > 2.* We
shall show here how the generating function of spanning hyperforests in a hypergraph, which
arises as the ¢ — 0 limit of the partition function of the g-state Potts model on the hypergraph
[24], can be represented as a Grassmann integral involving a quadratic term together with
special multi-fermion interactions associated with the hyperedges. Once again, this fermionic
model possesses an OSP(1]2) supersymmetry. This extension from graphs to hypergraphs is
thus not only natural, but actually sheds light on the underlying supersymmetry.

Let us begin by recalling briefly the combinatorial identities proven in [12], which come in
several levels of generality. Let G = (V, E) be a finite undirected graph with vertex set V and
edge set E. To each edge e we associate a weight w,, which can be a real or complex number or,
more generally, a formal algebraic variable; we then define the (weighted) Laplacian matrix
L = (L;j)i jev for the graph G by

Lij:: i %f Z#J

D ki Wik it i=j.

We introduce, at each vertex i € V, a pair of Grassmann variables ;, ¥, which obey the usual

rules for Grassmann integration [11, 28]. Our identities show that certain Grassmann integrals

over ¥ and ¥ can be interpreted as generating functions for certain classes of combinatorial
objects on G.

Our most general identity concerns the operators Qr associated with arbitrary connected
subgraphs I' = (Vr, Er) of G via the formula

Or = (H we) <H nﬁl«m). (12)

ecEr ieVr

(1.1)

(Note that each Qr is even and hence commutes with the entire Grassmann algebra.) We
prove the very general identity

12
/ DY, ¥) exp [&Lw + ZtrQr] = > (1"[ wg> []wH. (1.3)
r a=1

H spanning CG  \eeH
H=(H,,....Hy)

where the sum runs over spanning subgraphs H € G consisting of connected components
(Hy, ..., Hy), and the weights W (H,,) are defined by

W(H,) = Z tr, (1.4)
I'<H,

where I' < H,, means that H, contains I" and contains no cycles other than those lying entirely
within I

4 For examples in the recent physics literature where the hypergraph concept is used, see for instance [24-27].
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Let us now specialize (1.3) to the case in which 7 = #; when I" consists of a single vertex
i with no edges, fr = u, when I' consists of a pair of vertices 7, j linked by an edge e and
tr = 0 otherwise. We then have

/‘D(l/ﬁ V) exp 1/}L¢+Zlilpi1/fi+Zuijwiﬂ/_fﬂ/fil/_fj¢’j

(i)

- X (M) D e x ). 0

FeF(G) ecF a=1 \ieV(F,) ecE(Fy)
F=(Fy,....Fy)
where the sum runs over spanning forests F' in G with components Fi, ..., Fy; here V(F,)
and E (F,) are, respectively, the vertex and edge sets of the tree F,.
If we further specialize (1.5) to u, = —A for all edges e (where A is a global parameter),
we obtain

[P e [ GLi e S b =1 Y wi

(ij)

= Z (Hw)ﬁ A+ Z (t; — 1) (1.6)

ecF a=1 ieV(F,)
F=(Fy,..., )

since |E(Fy)| = |V (F,)| — 1. If, in addition, we take t; = A for all vertices i, then we obtain

[ P exe | FLy e G =k 3w,

(i)

- Z (]‘[ we> AR (1.7a)

FeF(G) \eeF

=V w-) (1.7b)
where k(F) is the number of component trees in the forest F; this is the generating function
of (unrooted) spanning forests of G. Furthermore, as discussed in [12] and in more detail in
section 7, the model (1.7) possesses an OSP(1|2)-invariance. If, by contrast, in (1.6) we take
A = 0 but {#;} general, we obtain

14
/ D(W&)exp[wamfnwi}: > (Hwe>1"[ >ooul, (1.8)
i )

FeF(G eckF a=1 \ieV(F,)
=(F1,....F¢)

which is the formula representing rooted spanning forests (with a weight #; for each root i) as a
fermionic Gaussian integral (i.e., a determinant) involving the Laplacian matrix (this formula
is a variant of the so-called principal-minors matrix-tree theorem).

In this paper we shall not attempt to find the hypergraph analog of the general formula
(1.3), but shall limit ourselves to finding analogs of (1.5)—(1.8). The formulae to be presented
here thus express the generating functions of unrooted or rooted spanning hyperforests in a
hypergraph in terms of Grassmann integrals. In particular, the hypergraph generalization of
(1.7) possesses the same OSP(1]|2) supersymmetry that (1.7) does (see section 7).
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The proof given here of all these identities is purely algebraic (and astonishingly simple);
the crucial ingredient is to recognize the role and the rules of a certain Grassmann subalgebra
(see section 4). It turns out (section 7) that this subalgebra is nothing other than the algebra
of OSP(1|2)-invariant functions, though this is far from obvious at first sight. The unusual
properties of this subalgebra (see lemma 4.1) thus provide a deeper insight into the identities
derived in [12] as well as their generalizations to hypergraphs, and indeed provide an alternate
proof of (1.6)—(1.8). Pictorially, we can say that it is the underlying supersymmetry that is
responsible for the cancellation of the cycles in the generating function, leaving only those
spanning (hyper)graphs that have no cycles, namely, the (hyper)forests.

In particular, the limit of spanning hypertrees, which is easily extracted from the general
expression for (rooted or unrooted) hyperforests, corresponds in the OSP(1|2)-invariant o -
model to the limit in which the radius of the supersphere tends to infinity, so that the nonlinearity
due to the curvature of the supersphere disappears. However, the action is in general still non-
quadratic, so that the model is not exactly soluble. (This is no accident: even the problem of
determining whether there exists a spanning hypertree in a given hypergraph is NP-complete
[29].) Only in the special case of ordinary graphs is the action purely quadratic, so that the
partition function is given by a determinant, corresponding to the statement of Kirchhoff’s
matrix-tree theorem.

The OSP(1|2)-invariant fermionic models discussed in [12] and the present paper can be
written in three equivalent ways:

e As purely fermionic models, in which the supersymmetry is somewhat hidden.

e As o-models with spins taking values in the unit supersphere in R, in which the
supersymmetry is manifest.

e As N-vector models [= O(N)-symmetric o-models with spins taking values in the unit
sphere of R"] analytically continued to N = —1.

The first two formulations (and their equivalence) are discussed in section 7. Further aspects of
this equivalence—notably, the role played by the Ising variables arising in (7.9) and neglected
here—will be discussed in more detail elsewhere [30].

In a subsequent paper [31], we will discuss the Ward identities associated with the
OSP(1|2) supersymmetry and their relation to the combinatorial identities describing the
possible connection patterns among the (hyper)trees of a (hyper)forest.

The method proposed in the present paper has additional applications not considered here.
With a small further effort, a class of Grassmann integrals wider than (5.2)/(6.3)—allowing
products [], fc(z) in the action in place of the single operators f j” —can be handled. Once
again one obtains a graphical expansion in terms of spanning hyperforests, where now the
weights have a more complicated dependence on the set of hyperedges, thus permitting a
description of certain natural interaction patterns among the hyperedges of a hyperforest (see
remark at the end of section 5). This extended model is, in fact, the most general Hamiltonian
that is invariant under the OSP(1|2) supersymmetry.

The plan of this paper is as follows: in section 2, we recall the basic facts about graphs
and hypergraphs that will be needed in the sequel. In section 3, we define the g-state Potts
model on a hypergraph and prove the corresponding Fortuin—Kasteleyn representation. (This
section is unnecessary for the proof of the combinatorial identities that form the main focus
of this paper, but it provides additional physical motivation.) In section 4, we introduce the
Grassmann algebra over the vertex set V, and study a subalgebra with interesting and unusual
properties, which is generated by a particular family of even elements f/g’\) with A C V. In

section 5, we study a very general partition function involving the operators f/ik) and we show
how it can be expressed as a generating function of spanning hyperforests in a hypergraph with
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vertex set V. In section 6 we study a somewhat more general Grassmann integral, which can
be interpreted as a correlation function in this same Grassmann model; we show how it too can
be expressed as a sum over spanning hyperforests. In section 7 we show that in one special
case—namely, the hypergraph generalization of (1.7)—the model studied in the preceding
sections can be rewritten as an OSP(1|2)-invariant o-model and indeed is the most general
OSP(1|2)-invariant Hamiltonian involving v and v/. These o-model formulae motivate the
definition of f X\) given in section 4, which might otherwise remain totally mysterious.

In appendix A, we prove a determinantal formula for f f("\). In appendix B, we present
a graphical formalism for proving both the classical matrix-tree theorem and numerous
extensions thereof, which can serve as an alternative to the algebraic approach used in the
main body of this paper.

Let us stress that everything in this paper is mathematically rigorous, with the possible
exception of section 7. Mathematicians unfamiliar with the Grassmann—Berezin calculus can
find a brief introduction in ([6], section 2) or ([32], appendix A).

2. Graphs and hypergraphs

A (simple undirected finite) graph is a pair G = (V, E), where V is a finite set and E is a
collection (possibly empty) of two-element subsets of V.> The elements of V are the vertices
of the graph G, and the elements of E are the edges. Usually, in a picture of a graph, vertices
are drawn as dots and edges as lines (or arcs). Note that, in the present definition, loops (<)
and multiple edges («<<») are not allowed®. We write |V | (resp. | E|) for the cardinality of the
vertex (resp. edge) set; more generally, we write | S| for the cardinality of any finite set S.

A graph G’ = (V', E’) is said to be a subgraph of G (written G’ C G)incase V' C V
and E’' C E. If V' = V, the subgraph is said to be spanning. We can, by a slight abuse of
language, identify a spanning subgraph (V, E’) with its edge set E'.

A walk (of length &k > 0) connecting vy with v, in G is a sequence
(vo, e1, vy, €2, V2, ..., e, v;) such thatall v; € V,alle; € Eand v;_,v; € ¢; for 1 <i < k.
A path in G is a walk in which vy, ..., v are distinct vertices of G and e, . . ., ¢; are distinct
edges of G. A cycle in G is a walk in which

(a) vy, ..., vx_; are distinct vertices of G and v = vp;
(b) ey, ..., e are distinct edges of G;
() k=27

The graph G is said to be connected if every pair of vertices in G can be connected by a
walk. The connected components of G are the maximal connected subgraphs of G. It is not
hard to see that the property of being connected by a walk is an equivalence relation on V
and that the equivalence classes for this relation are nothing other than the vertex sets of the
connected components of G. Furthermore, the connected components of G are the induced

3> To avoid notational ambiguities it should also be assumed that £ NV = @. This stipulation is needed as protection
against the mad set theorist who, when asked to produce a graph with vertex set V = {0, 1, 2}, interprets this a la von
Neumann as V = {J, {/}}, {, {#}}}, so that the vertex 2 is indistinguishable from the edge {0, 1}.

© This restriction is made mainly for notational simplicity. It would be easy conceptually to allow multiple edges,
by defining E as a multiset (rather than a set) of two-element subsets of V (cf also footnote 10).

7 Actually, in a graph as we have defined it, all cycles have length > 3 (because e; # e, and multiple edges are not
allowed). We have presented the definition in this way with an eye to the corresponding definition for hypergraphs
(see below), in which cycles of length 2 are possible.
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T Hit

Figure 1. A forest (left) and a hyperforest (right), each with four components. Hyperedges with
more than two vertices are represented pictorially as star-like polygons.

subgraphs of G on these vertex sets®. We denote by k(G) the number of connected components
of G. Thus, k(G) = 1 if and only if G is connected.

A forest is a graph that contains no cycles. A tree is a connected forest. (Thus, the
connected components of a forest are trees.) It is easy to prove, by induction on the number
of edges, that

[El = |V]+k(G) =0 2.1

for all graphs, with equality if and only if G is a forest.

In a graph G, a spanning forest (resp. spanning tree) is simply a spanning subgraph that
is a forest (resp. a tree). We denote by F(G) [resp. 7 (G)] the set of spanning forests (resp.
spanning trees) in G. As mentioned earlier, we will frequently identify a spanning forest or
tree with its edge set.

Finally, we call a graph unicyclic if it contains precisely one cycle (modulo cyclic
permutations and inversions of the sequence vy, ey, vy, €2, Uz, ..., €, V). It is easily seen
that a connected unicyclic graph consists of a single cycle together with trees (possibly
reduced to a single vertex) rooted at the vertices of the cycle.

Hypergraphs are the generalization of graphs in which edges are allowed to contain more
than two vertices. Unfortunately, the terminology for hypergraphs varies substantially from
author to author, so it is important to be precise about our own usage. For us, a hypergraph is
a pair G = (V, E), where V is a finite set and E is a collection (possibly empty) of subsets
of V, each of cardinality > 2.° The elements of V are the vertices of the hypergraph G, and
the elements of E are the hyperedges (the prefix ‘hyper’ can be omitted for brevity). Note that
we forbid hyperedges of 0 or 1 vertices (some other authors allow these)'®. We shall say that
A € E is a k-hyperedge if A is a k-element subset of V. A hypergraph is called k-uniform
if all its hyperedges are k-hyperedges. Thus, a graph is nothing other than a two-uniform
hypergraph.

The definitions of subgraphs, walks, cycles, connected components, trees, forests and
unicyclics given above for graphs were explicitly chosen in order to immediately generalize
to hypergraphs: it suffices to copy the definitions verbatim, inserting the prefix ‘hyper’ as
necessary. See figure 1 for examples of a forest and a hyperforest.

The analog of the inequality (2.1) is the following:

8 If V' C V, the induced subgraph of G on V', denoted as G[V'], is defined to be the graph (V’, E’) where E’ is the
set of all the edges e € E that satisfy ¢ C V' (i.e., whose endpoints are both in V).

9 To avoid notational ambiguities it is assumed once again that E NV = ¢.

10 Qur definition of hypergraph is the same as that of McCammond and Meier [33]. It is also the same as that of
Grimmett [24] and Gessel and Kalikow [34], except that these authors allow multiple edges and we do not: for them,
E is a multiset of subsets of V (allowing repetitions), while for us E is a set of subsets of V (forbidding repetitions).
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Proposition 2.1. Let G = (V, E) be a hypergraph. Then
D (A= 1) = |[V]+k(G) >0, 2.2)

AeE
with equality if and only if G is a hyperforest.

Proofs can be found, for instance, in ([22], p 392, proposition 4) or ([34], pp 278-9,
lemma).

Note one important difference between graphs and hypergraphs: every connected graph
has a spanning tree, but not every connected hypergraph has a spanning hypertree. Indeed, it
follows from proposition 2.1 that if G is a k-uniform connected hypergraph with n vertices,
then G can have a spanning hypertree only if kK — 1 divides n — 1. Of course, this is merely
a necessary condition, not a sufficient one! In fact, the problem of determining whether
there exists a spanning hypertree in a given connected hypergraph is NP-complete (hence
computationally difficult), even when restricted to the following two classes of hypergraphs:

(a) hypergraphs that are linear (each pair of edges intersect in at most one vertex) and regular
of degree 3 (each vertex belongs to exactly three hyperedges) or

(b) four-uniform hypergraphs containing a vertex which belongs to all hyperedges, and in
which all other vertices have degree at most 3 (i.e., belong to at most three hyperedges).

(See [29], theorems 3 and 4.) It seems to be an open question whether the problem remains
NP-complete for three-uniform hypergraphs.

Finally, let us discuss how a connected hypergraph can be built up one edge at a time.
Observe first that if G = (V, E) is a hypergraph without isolated vertices, then every
vertex belongs to at least one edge (that is what ‘without isolated vertices’ means!), so
that V = |J,.z A. In particular, this holds if G is a connected hypergraph with at least two
vertices. So let G = (V, E) be a connected hypergraph with |V| > 2; let us then say that
an ordering (Aj, ..., A,) of the hyperedge set E is a construction sequence in case all of
the hypergraphs G, = (Uf=1 A {Ay, ..., Ag}) are connected (1 < £ < m). An equivalent
condition is that ( Uf;ll A,-) N Ay # 0 for2 < £ < m. We then have the following easy result:

Proposition 2.2. Let G = (V, E) be a connected hypergraph with at least two vertices. Then,

(a) There exists at least one construction sequence.

(b) If G is a hypertree, then for any construction sequence (Ay,...,A,) we have
(U2l A) N Ae| =1 forall €2 < € < m).
(c) If G is not a hypertree, then for any construction sequence (Ay, ..., A,) we have

‘(Uf;ll A;) N A¢| = 2 for at least one L.

Proof. (a) The ‘greedy algorithm’ works: let A| be any hyperedge; and at each stage £ > 2,
let Ay be any hyperedge satisfying ( Uf;,l A,-) N A, # @ (such a hyperedge has to exist or else
G fails to be connected).

Items (b) and (c) are then easy consequences of proposition 2.1. (|

3. Potts model on a hypergraph

Let g be a positive integer, and let S be a set of cardinality g. Then the g-state Potts model on
the hypergraph G = (V, E) is defined as follows [24]: at each vertex i € V we place a color
(or spin) variable o; € S. These variables interact via the Hamiltonian

Hpous(0) = — Y Ja84(0), 3.

AcE
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where {J4}acr are a set of couplings associated with the hyperedges of G, and the Kronecker
delta 84 is defined for A = {iy, ..., ix} by

1 if o) =+ =0

0 otherwise . (3.2)

da(o) = {
The partition function ZZO"S is then the sum of exp[—Hpows(0)] over all configurations
o = {oiliev.

It is convenient to introduce the quantities vy, = e’* — 1; we write v = {vs}acr for the
collection of hyperedge weights. We can then prove the Fortuin—Kasteleyn (FK) representation
[35, 36] for the hypergraph Potts model [24], by following exactly the same method as is used
for graphs (see e.g. [19], section 2.2).

Proposition 3.1 (Fortuin—Kasteleyn representation). Let G = (V, E) be a hypergraph. Then,
for integer g > 1, we have

ZgottS(q’v) = Z exp[_HPotts(U)] — Z qk(E/) 1_[ VA, (33)

o:V—=S§ E'CE AeE’

where k(E’) denotes the number of connected components in the hypergraph (V, E').
Proof. We start by writing
Zgg. vy = Y expl—Hpous(0)l = Y ] +vadato)]l. (34)

o:V—=>S§ o:V—S AeE

Now expand out the product over A € E, andlet E’ C E be the set of hyperedges for which the
term v434 (o) is taken. Now perform the sum over configurations {o;};cy: in each connected
component of the spanning subhypergraph (V, E’) the color o; must be constant, and there
are no other constraints. Therefore,

ZEOLLS(q’V) — Z qk(E') l_[ VA, 3.5)

E'CE A€E'

as was to be proved. |

Note that the right-hand side of (3.3) is a polynomial in ¢; in particular, we can take it as
the definition of the Potts-model partition function Z¢ (g, v) for noninteger g.

Let us discuss in particular the various types of ¢ — 0 limits that can be taken in the
hypergraph Potts model, by following a straightforward generalization of the method that is
used for graphs [19], section 2.3.

The simplest limit is to take ¢ — 0 with fixed v. From the definition (3.3) we see that
this selects out the spanning subhypergraphs E’ € E having the smallest possible number of
connected components; the minimum achievable value is of course k(G) itself (=1 in case G
is connected, as it usually is). We therefore have

;g%q*“@ Zs(gq,v) = Cg(v), (3.6)

where

cem= > [l 3.7)

E'CE  A€E'
k(E"=k(G)

is the generating polynomial of ‘maximally connected spanning subhypergraphs’ (=connected
spanning subhypergraphs in case G is connected).
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A different limit can be obtained by taking ¢ — 0 with fixed values of w, = v4 /g7,

From (3.3) we have

Zo(q. (g wah) = Y gFE e (7D Ty, (3.8)
E'CE AeE’

Using now proposition 2.1, we see that the limit ¢ — 0 selects out the spanning hyperforests:
lim ¢~"1Z (g, {q""" wah) = Fo(w), (3.9)
q—

where
Fowy= Y ] wa (3.10)

E'eF(G) A€E'
is the generating polynomial of spanning hyperforests.

By a further limit we can obtain spanning hypertrees. To see this, assume first that G is
connected (otherwise there are no spanning hypertrees). In Cg(v), replace vy by Al4I=Tvy
and let . — 0; then we pick out the connected spanning subhypergraphs having the minimum
value of ), (|A| — 1), which by proposition 2.1 are precisely the spanning hypertrees:

;irnor“v‘—”CG({x'A‘—‘vA}> = T5(v), (3.11)
where
Tem= Y []va (3.12)
E'eT(G) A€E’

is the generating polynomial of spanning hypertrees. Alternatively, in Fg(w), replace w4 by
A4=1w, and let A — oo; then we pick out the spanning hyperforests having the maximum
value of ), (JA| — 1), which by proposition 2.1 are those with the minimum number of
connected components, i.e. again the spanning hypertrees:

Jim A WD F (A ) = To(w). (3.13)

There is, however, one important difference between the graph case and the hypergraph case:
as discussed in section 2, every connected graph has a spanning tree, but not every connected
hypergraph has a spanning hypertree. So the limits (3.11) and (3.13) can be zero.

4. A Grassmann subalgebra with unusual properties

Let V be a finite set of cardinality n. For each i € V we introduce a pair ¥;, v; of generators
of a Grassmann algebra (with coefficients in R or C). We therefore have 2n generators, and
the Grassmann algebra (considered as a vector space over R or C) is of dimension 221,

For each subset A C V, we associate the monomial 74 = ]_L.E A IZ‘ilﬂi, where 75 = 1.
Note that all these monomials are even elements of the Grassmann algebra; in particular, they
commute with the whole Grassmann algebra. Clearly, the elements {t4}acy span a vector
space of dimension 2”. In fact, this vector space is a subalgebra, by virtue of the obvious

relations
T if ANB =10
7 S @.1
0 if ANB 0.

Let us now introduce another family of even elements of the Grassmann algebra, also
indexed by subsets of V, which possesses very interesting and unusual properties. For each
subset A C V and each number X (in R or C), we define the Grassmann element

W= A= AN+ Y Tai = D Wi Tasi- “4.2)
i€eA i,jeA
i#]
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(The motivation for this curious formula will be explained in section 7.) For instance, we have

=2 (4.3a)
f{(” =1 for all i (4.3b)

TN = =M Wy + s+ — Uy —

= _MﬁiWiWﬂﬂj + (sz - I/fj)(wz — ;) (4.3¢)
and in general
k
f{(k,).... =21 =0T, i+ Z Titsonsilyyeoni) — Z v, g Tl oonsifoonie} - 4.4)
a=1 1<, B<k
ap
(Whenever we write a set {iy, ..., i}, it is implicitly understood that the elements i, ..., iy

are all distinct.) Clearly, each fy) is an even element in the Grassmann algebra, and in
particular it commutes with all the other elements of the Grassmann algebra.
The definition (4.2) can also be rewritten as

PRI DYC YY) D83, | Ta = (1 — |A]) +39) 4 (4.5)

i,jeA
where ; = 9/0v; and 9; = /9, are the traditional anticommuting differential operators
satisfying 8;y; = 8;;,9;%; = 0,0, ; = 8;,9;%; = 0 and the (anti-)Leibniz rule, while

d =)y 0 and J = ZleV di.
Let us observe that
T if [ANB|=1
()‘)‘L'B _ AUB | | (4.6)
0 if |[ANB|>2

as an immediate consequence of (4.1) [when A N B = {k}, only the second term in (4.2) with
i = k survives]. Note, finally, the obvious relations

Jim f“’ —|ADTaA 4.7)
and

W 0 = (L= A (1 = |ADTa. (4.8)

We are interested in the subalgebra of the Grassmann algebra that is generated by the
elements f X‘) as A ranges over all nonempty subsets of V, for an arbitrary fixed value of A.!!
The key to understanding this subalgebra is the following amazing identity:

Lemma 4.1. Let A, B C V with AN B # (. Then,

A .
R P if |ANBl=1
A Jp = . 4.9)
0 if |[ANB|>2
More generally,
" )
w0 _ | Faok if [ANBl=1
A Jp = . (4.10)
0 if |[ANB|>2

T One can also consider the smaller subalgebras generated by the elements fa ™ as A ranges over some collection S
of subsets of V.
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where A is the weighted average

Al = DAi+ (Bl — 1N Al — DA+ (B — 1N
o _ (A= DA+ (Bl = DA _ (1A= DA+ (B~ DA @i
Al +|B|—2 [AUB|—1
First proof. Formula (4.10) can be proven by a direct (but lengthy) calculation within the
Grassmann algebra that makes explicit a sort of fermionic—bosonic cancellation. Details can
be found in the first preprint version of this paper (0706.1509v1); see especially footnote 10

there. O

Second proof. We are grateful to an anonymous referee for suggesting the following simple
and elegant proof using the differential operators d and 9:
Since 92 = §% = 0, we have

(0974)(3075) = 30(140975) = 00(T530T4), (4.12)
so that
P FI = 01— |A])Ta00T5 + A/ (1 — |B)T500TA

+20 (1= [AD(1 — |B)TaTs + 00(T40975). (4.13)
If|[ANB| > 1,then t47p = 0 and

140975 = 15097, = ;“UB Lf :j 2 2: ;; (4.14)
This proves (4.10). O

As a first consequence of lemma 4.1, we have

Corollary 4.2. Let A C V with |A| > 2. Then the Grassmann element f is nilpotent of
order 2, i.e.,

(157) =o0.
In particular, a product [/, f ( ) vanishes whenever there are any repetitions among the
Ar, ..., A,. So we can henceforth concern ourselves with the case in which there are no
repetitions; then E = {A}, ..., A, } is a set (as opposed to a multiset) and G = (V, E) is a
hypergraph.

By iterating lemma 4.1 and using proposition 2.2, we easily obtain

Corollary 4.3. Let G = (V, E) be a connected hypergraph. Then,

1—[ @ _ { ( ) z:f G ?s ahypertree 4.15)
ek if Gisnotahypertree.

More generally,
1—[ (M) { (A ) if Gisahypertree 4.16)
ek if Gisnotahypertree.

where M, is the weighted average
- DoaceUAl=Dra D4 (Al - 1))\A. @.17)

Lace(AI=D " | cpa]

We are now ready to consider the subalgebra of the Grassmann algebra that is generated
by the elements f /9) as A ranges over all nonempty subsets of V. Recall first that a partition
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of V is a collection C = {C, } of disjoint nonempty subsets C,, € V that together cover V. We
denote by IT(V) the set of partitions of V. If V has cardinality n, then I1(V) has cardinality
B(n), the nth Bell number ([37], pp 33—4). We remark that B(n) grows asymptotically roughly
like n! ([38], sections 6.1-6.3).

The following corollary specifies the most general product of factors f, » - Of course,
there is no need to consider sets A of cardinality 1, since f“} =1.

Corollary 4.4. Let E be a collection (possibly empty) of subsets of V, each of cardinality > 2

(a) If the hypergraph G = (V, E) is a hyperforest and {C, } is the partition of V induced by
the decomposition of G into connected components, then [ [, g f (M ]_[ (A) More

generally, [ ,cp f (“) = l_[y fcyy), where X, is the weighted average (4.17) taken over

the hyperedges contained in C,,.
(b) If the hypergraph G = (V E) is not a hyperforest, then [, p f4
(XA)
generally [ 4cp fa

Proof. It suffices to apply corollary 4.3 separately in each set C,,, where {C, } is the partition
of V induced by the decomposition of G into connected components. ]

('\) = 0, and more

It follows from corollary 4.4 that any polynomial (or power series) in { » } can be written

as a linear combination of the quantities f, i H (A) for partitions C = {C,, } € IT(V).
Using the foregoing results, we can 51mphfy the Boltzmann weight associated with a
Hamiltonian of the form

H=— waf (4.18)

A€E

Corollary 4.5. Let G = (V, E) be a hypergraph (that is, E is a collection of subsets of V,
each of cardinality > 2). Then,

exp (Z wa f W) Z (]‘[ wA> ]_[ Iy ik (4.19)

AcE FEF(G)  \AeF
F=(Fy,....Fy)
where the sum runs over spanning hyperforests F in G with components Fy, ..., Fy, and

V (Fy) is the vertex set of the hypertree F,. More generally,

exp (Z w f(“)> Z <l_[ wA) 1_[ f(k(F)), (4.20)

AcE FeF(G) AcF
F=(Fy,....F¢)

where )y is the weighted average (4.17) taken over the hyperedges contained in the hypertree
F,.

Proof. Since f, 4 are nilpotent of order 2 and commuting, we have

exp (Z waf W) [T +wari) 4.21a)

A€E A€E

=Y (]_[ wA> (]_[ (W) (4.21b)

E'CE \AeF’ AeE’



Grassmann integral representation for spanning hyperforests 13811

Using now corollary 4.4, we see that the contribution is nonzero only when (V, E’) is a
hyperforest, and we obtain (4.19)/(4.20). O

In a separate paper [39], we shall study in more detail the Grassmann subalgebra that
is generated by the elements f X\) as A ranges over all nonempty subsets of V. In the
present section, we have seen that any element of this subalgebra can be written as a linear
combination of the quantities fc( ]_[ (M for partitions C = {C, } € IT(V). It turns out

that the quantities fék) are linearly dependent (i.e., an overcomplete set) as soon as |V| >

We shall show [39], in fact, that a vector-space basis for the subalgebra in question is given
by the quantities fc(’\) as C ranges over all non-crossing partitions of V (relative to any fixed
total ordering of V). It follows that the vector-space dimension of this subalgebra is given
by the Catalan number C,, = - (*"), where n = |V|. This is vastly smaller than the Bell

number B(n), which is the dimension that the subspace would have if the f, » were linearly

independent. [Indeed, one can see immediately that { <A)} must be linearly dependent for
all sufficiently large n, simply because the entire Grassmann algebra has dimension only
4" <« B(n).] It also turns out [39] that all the relations among { fcm} are generated (as an
ideal) by the elementary relations R,;.q = 0, where

) ») ») )
Rabed Z}“f{a,bcd f{bcd} facd} f{abd fa ,b,c}
(*) (A) (*) ()») ) Q)
+ f{a b}f f{ f f{a,d}f{h,c} 4.22)

and a, b, ¢, d are distinct vertices.

5. Grassmann integrals for counting spanning hyperforests

For any subset A € V and any vector t = (#;);cy of vertex weights, let us define the integration
measure

Daa(W, ) = [ | dy dij; Vi1, (5.1
icA
Our principal goal in this section is to provide a combinatorial interpretation, in terms of
spanning hyperforests, for the general Grassmann integral (‘partition function’)

z= [ D irexp [Z T+ 3w ﬂ (5.20)

A€E

= / Dy «(, ¥) exp [Z wAf,i“} : (5.2b)

A€k

where G = (V, E) is an arbitrary hypergraph (that is, E is an arbitrary collection of subsets
of V, each of cardinality > 2) and {w4}4cg are arbitrary hyperedge weights. We also handle
the slight generalization in which a separate parameter X 4 is used for each hyperedge A.

Our basic results are valid for an arbitrary vector t = (#;);cy of ‘mass terms’. However,
as we shall see, the formulae simplify notably if we specialize to the case in which #;, = A
for all i € V. This is not an accident, as it corresponds to the case in which the action is
OSP(1]2)-invariant (see section 7).

We begin with some formulae that allow us to integrate over the pairs of variables v;, ¥,
one at a time:

Lemma 5.1. Let AC Vandi € V. Then,
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T if ieA
1iTa if i ¢ A
Wt — A)Ta if icA

(b) /‘dl/f, dl&l eti‘Z’,W[ fé}t) — A\()z;) ‘ .
fia if i¢A.

(a) fdl[/i dy, e Vivic, =

Proof. Part (a) is obvious, as is (b) when i ¢ A. To prove (b) wheni € A, we write

g” =A1—[A]DT4a + ZTA\J‘ - Z 1ﬁj“sﬁka\{j,k} G-3)
jeA Jj.keA
J#k

and integrate with respect to dy; di; eViVi . We obtain

A = [ADTaw HHiTa + E TA{i,j) — E Vi VrTa i k) (5.4
jeA~i jkeA~i
JF#k

(in the last term we must have j, k # i by parity), which equals f /9\) ;+(ti —A)Ta as claimed.

|
Applying lemma 5.1 repeatedly for i lying in an arbitrary set B C V, we obtain
Corollary 5.2. Let A, B C V. Then

/ Dy, ) £y = ( I r,-> [fﬁzg + ( > - )\)) TA\B} . (59

ieB\A ieBNA

In particular, for B = A we have

[ Pastw g = Y- . 5.6)

icA

Proof. The factors #; fori € B~ A follow trivially from the second line of lemma 5.1(b). For
the rest, we proceed by induction on the cardinality of B N A. If |B N A] = 0, the result is
trivial. So assume that the result holds for a given set B, and consider B = B U {j} with
j € ANB. Using lemmas 5.1(a) and (b) we have

/dlpj dl/_/j iV |: X\\)B + ( Z (4 —A)) TA\B]

ieBNA

= fA iy + = Mtap) + ( > - k)) T(A~B)~{)) (5.7a)

ieBNA

= folp + < Z (4 — A)) TANB's (5.7b)

ieB'NA

as claimed. ]
Applying (5.6) once for each factor C, we have
Corollary 5.3. Let {C,} be a partition of V. Then

[ Pracr i T158 =TT e+ St =20 | 5.8)

o ieCy
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The partition function (5.2) can now be computed immediately by combining corollaries
4.5 and 5.3. We obtain the main result of this section.

Theorem 5.4. Let G = (V, E) be a hypergraph and let {w o} acg be hyperedge weights. Then

/D(lﬂ, ) exp {Z AREDY wAffimi|

A€E

= X (l_[wA)ﬁ S h— 3 (A= Dra . (5.9

FeF(G) AeF a=1 \ieV(F,) A€E(Fy)
F=(Fy,....Fy)

where the sum runs over spanning hyperforests F in G with components Fi, ..., F;, and
V (Fy) is the vertex set of the hypertree F,. In particular, if A4 takes the same value for all A,
we have

fD(Iﬂ, ) exp |:Z AREDY wAf,gx)j|

A€eE
4
= Z (l—[wA)l_[ A+ Z -1 |. (5.10)
FeF(G) AeF a=1 i€V (Fy)
F=(Fy,...F¢)

Proof. We apply (5.8), where (according to corollary 4.5) X, is the weighted average (4.17)
taken over the hyperedges contained in the hypertree F,. Then,

ot Y =k = ) ti—ke(V(E) 1) (5.11a)
ieV(Fy) ieV(Fy)
= Y ti— Y (Al=Dra (5.11b)
ieV(F,) A€E(F,)
O

If we specialize (5.10) to #; = A for all vertices i, we obtain

Corollary 5.5. Let G = (V, E) be a hypergraph and let {wa}acg be hyperedge weights.
Then,

/D(w, V) exp [x DTty wAf,?)] = > (]_[ wA) AR (5.12a)

A€eE FeF(G) \AeF

"y (]‘[ %) (5.12b)

FeF(G) \AeF

where the sum runs over spanning hyperforests F in G, and k(F) is the number of connected
components of F.

This is the generating function of unrooted spanning hyperforests, with a weight w4 for
each hyperedge A and a weight A for each connected component. Note that the second equality
in (5.12) uses proposition 2.1.

If, on the other hand, we specialize (5.10) to A = 0, we obtain
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Corollary 5.6. Let G = (V, E) be a hypergraph and let {wa}acg be hyperedge weights.
Then,

fD(wvlp)exp[thi\ﬁiwi+ZwAf,§0):|: > (Hw)ﬁ AR

A€E FEeF(G) AeF a=1 \ieV(F,)
F=(Fy,....Fy)
(5.13)
where the sum runs over spanning hyperforests F in G with components Fy, ..., Fy, and

V(F,) is the vertex set of the hypertree F,.

This is the generating function of rooted spanning hyperforests, with a weight w, for
each hyperedge A and a weight #; for each root i.

Finally, returning to the case in which #; = A for all i, we can obtain a formula more
general than (5.12) in which the left-hand side contains an additional factor fc(’\) = ]_[y I (j) ,
where C = {C, } is an arbitrary family of disjoint nonempty subsets of V. Indeed, it suffices
to differentiate (5.12) with respect to all the weights wc, .12 We obtain

Corollary 5.7. Let G = (V, E) be a hypergraph, let {wa}acg be hyperedge weights and let
C = {C,} be a family of disjoint nonempty subsets of V. Then

/ DY, ) (]‘[ fé?) exp [A ST+ wAf/i“]
14 i

AeE

— Z (1_[ wA) AR)=3, (G =D (5.14)

FeF(G;C) \AeF

where F(G; C) denotes the set of spanning hyperforests in G that do not contain any of {C, } as
hyperedges and that remain hyperforests (i.e., acyclic) when the hyperedges {C, } are adjoined.

Indeed, to deduce corollary 5.7 from corollary 5.5 by differentiation, it suffices to observe that,
by proposition 2.1, the number of connected components in the hyperforest obtained from F
by adjoining the hyperedges {C, } is precisely k(F) — Zy(|CV| —1).

For instance, if ]_[y fc(t) consists of a single factor f¢, then F(G; {C}) consists of the
spanning hyperforests in which all the vertices of the set C belong to different components.
Similarly, if ]_[V fc(i) consists of two factors f¢, fc, with C; N C, = @, then F(G; {C, C2})
consists of the spanning hyperforests in which each component contains at most one vertex
from C; and at most one vertex from C,. The conditions get somewhat more complicated
when there are three or more sets C,,.

It is possible to obtain an analogous extension of theorem 5.4 by the same method, but
the weights get somewhat complicated, precisely because we lose the opportunity of using
proposition 2.1 in a simple way.

Equations (5.9)—(5.13) are the hypergraph generalization of (1.5)—(1.8), respectively. To
see this, let G = (V, E) be an ordinary graph, so that each edge ¢ € E is simply an unordered
pair {i, j} of distinct vertices i, j € V, to which there is associated an edge weight w;; = wj;.
Then by definition (4.2) we have

) 7 7 7 7 7 7 7
SN ) = =0 i+ i+ — B — v (5.15)
12 1f the sets C, do not happen to belong to the hyperedge set E, it suffices to adjoin them to E and give them weight

wc, = 0. Indeed, there is no loss of generality in assuming that G is the complete hypergraph on the vertex set V,
i.e. that every subset of V of cardinality > 2 is a hyperedge.
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so that if we take A;; = —u;; we have
(—u; ) 7 7
Doowif =Y Uik Y wywi¥ivil vy (5.16)
{i,jleE i,jev {i,jleE

where the (weighted) Laplacian matrix for the graph G is defined as

—Wjj if l#]
L;; = e .
D ki Wik it i=j.

Then (5.9)—(5.13) become precisely (1.5)—(1.8), respectively.

More generally, consider the case in which G = (V, E) is a k-uniform hypergraph (an
ordinary graph corresponds to the case k = 2). Let w;, _; (assumed completely symmetric in
the indices iy, . . ., ir) be the weight associated with the hyperedge {ii, ..., i} wheniy, ..., i
are all distinct, and let w;, ...;, = 0 when at least two indices are equal. Define the (weighted)
Laplacian tensor (a rank-k symmetric tensor) by

(5.17)

— Wi, .. if iy,..., i are all different
Li. i = k%l Zi; Wi il if i, =i, (r # s) and the others are all different (5.18)
0 otherwise.

Then, we have

L - A -
Z wA ()L) = Z ..... [wlIWIzl//zng T wikl//ik + Ewilwil T wi/‘wiki| ’ (5.19)

A€eE [T ireV

so that the ‘action’ is given by (5.19) plus the ‘mass term’ A )_; ¥;4;. Combining corollary 5.5
with (5.19), we obtain a formula for the generating function of spanning hyperforests in a
k-uniform hypergraph:

Z (H wA> Ak — /D(w V) exp {)‘Zﬁﬁ Ui+ Z ﬁ

FeF(G) \AeF ik €V
X[Iﬁilwizlﬁh%;“"ﬁik%k Vi Vi, - lplklﬂtk]}- (5.20)

Let us remark that while the Laplacian matrix (5.17) for an ordinary graph has vanishing
row and column sums (i.e., Y j Lij = 0), the Laplacian tensor (5.18) for a hypergraph satisfies
Z[k L;, i =O0wheniy,...,i_ are all distinct, but not in general otherwise.

For an application to counting spanning hyperforests in the complete k-uniform
hypergraph, see [40].

Remark. One can also generalize (5.10) to allow products fe * =TI, £ » in the exponential

(i.e., in the action) in place of the single operators f , with correspondmg coefficients we.
These generalized integrals likewise lead to polynomials in the variables {w¢} such that the
union of the families C; arising in any given monomial is the set of hyperedges of a hyperforest.
However, the simultaneous presence of certain sets of hyperedges in the hyperforest now gets
extra weights. We hope to discuss these extensions elsewhere. This generalized model is
conceptually important because, when #; = A for all i, it corresponds to the most general
OSP(1]2)-invariant action (see section 7).
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6. Extension to correlation functions

In the preceding section, we saw how the partition function (5.2) of a particular class of
fermionic theories can be given a combinatorial interpretation as an expansion over spanning
hyperforests in a hypergraph. In this section, we will extend this result to give a combinatorial
interpretation for a class of Grassmann integrals that correspond to (unnormalized) correlation
functions in this same fermionic theory; we will obtain a sum over partially rooted spanning
hyperforests satisfying particular connection conditions.

Given ordered k-tuples of vertices I = (i1, iz, ..., i) € Vkand J = (ji, jo, ..., ji) €

V*, let us define the operator
Ory =¥ V¥, (6.1
which is an even element of the Grassmann algebra. Of course, the iy, is, ..., iy must be all
distinct, as must the jj, jo, ..., ji or else we will have O; ; = 0. We shall therefore assume
henceforth that 1, J € V;z, where V;Z is the set of ordered k-tuples of distinct vertices in V.
Note, however, that there can be overlaps between the sets {i\, i», ..., i} and {ji, j2, . . -, ji}-

Note finally that O, ; is antisymmetric under permutations of the sequences / and J, in the
sense that

Oloo,0r = sgn(o) sgn(t)Oy 4 (6.2)

for any permutations o, T of {1, ..., k}.

Our goal in this section is to provide a combinatorial interpretation, in terms of partially
rooted spanning hyperforests satisfying suitable connection conditions, for the general
Grassmann integral (‘unnormalized correlation function’)

[01.)]=2(01)) = / DY, ¥)O1.; exp [Z AR wAfg”} (6.3a)

A€E

= / Dy, (¥, YOy exp [Z wAfg”} : (6.3D)

AeE

The principal tool is the following generalization of (5.6):
Lemma 6.1. Let A C V, and let I = (i, ia, ..., i) € A and J = (ji, jo, ..., ji) € AL
Then,
AtDieati —2) if k=0
[ Pastw o =4 if k=1 (6.4
0 if k>=2.

Proof. The case k = 0 is just (5.6). To handle k = 1, recall that

V=AU = ADTA+ Y A — Y ¥mTasim- (6.5)
leA Z.@r;ﬁeA

Now multiply £ by ¥;%; with i, j € A, and integrate with respect to Dy (¥, ¥). If

i = j, then the only nonzero contribution comes from the term ¢ = i in the single sum, and
&iwi TA = T4, so the integral is 1. If i # j, then the only nonzero contribution comes from
the term £ = j, m = i in the double sum, and (V;¥;)(—=V ;%) Ta<i.j) = Ta. so the integral
is again 1.
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Finally, if |I| = |J| = k > 2, then every monomial in Oy, ff(f) has degree >
21A| —2+2k > 2|Al,50 01, f =0. O

Of course, it goes without saying that if m (i, V) is a monomial of degree k in the
variables ¥; (i € A) and degree k' in the variables ¥; (i € A), and k is not equal to k', then
[ DacW. ymp, ) £ = 0.

Now go back to the general case I = (i1, ip, ..., i) € V;Z and J = (i, jo,---» Jx) € vk
let C = {C,},/_, be a partition of V, and consider the integral

I(1,J:C) = f Dy (¥ )01 [ | 1L (6.6)
a=1
The integral factorizes over the sets C, of the partition, and it vanishes unless |I N C,| =
|J N Cy| for all o; here I N C, denotes the subsequence of / consisting of those elements that
lie in C,, kept in their original order, and |/ N C, | denotes the length of that subsequence (and
likewise for J N C,). So let us decompose the operator O, ; as

Ony=0,J;0) 1_[ Oinc,,inCy s (6.7)

a=1

where o (I, J;C) € {£1} is a sign coming from the reordering of the fields in the product.
Applying lemma 6.1 once for each factor C,, we see that the integral (6.6) is nonvanishing
only if |INCy| = |J NCy| < 1forall «: thatis, each set C, must contain either one element
from 7 and one element from J (possibly the same element) or else no element from I or
J. Let us call the partition C properly matched for (I, J) when this is the case. (Note that
this requires in particular that m > k.) Note also that for properly matched partitions C we
can express the combinatorial sign o (/, J; C) in a simpler way: it is the sign of the unique
permutation 7w of {1, ..., k} such that i, and j,( lie in the same set C, foreach r (1 < r < k).
(Note in particular that when {iy, i, ..., it} N {j1, j2, .-+, Jx} = S # @, the pairing 7 has
to match the repeated elements [i.e., i, = j;) Whenever i, € S], since a vertex cannot
belong simultaneously to two distinct blocks C, and Cg.) We then deduce immediately from
lemma 6.1 the following generalization of corollary 5.3:

Corollary 6.2. Let I, J € V;Z and let C = {C,} be a partition of V. Then

/ Dy, 101, [ 12

_ sen(7) [ . 11nc, 120 (h+ > iec, ti — M) ifC is properly matched for (1, J)
0 otherwise

(6.8)

where 7 is the permutation of {1, ..., k} such that i, and jr( lie in the same set Cy for
each r.

We can now compute the integral (6.3) by combining Corollaries 4.5 and 6.2. If
G = (V, E) is a hypergraph and G’ is a spanning subhypergraph of G, let us say that G’
is properly matched for (I, J) [we denote this by G’ ~ (I, J)] in case the partition of V
induced by the decomposition of G’ into connected components is properly matched for
(1, J). We then obtain the main result of this section:
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Theorem 6.3. Let G = (V, E) be a hypergraph, let {wa}acr be hyperedge weights, and let
1,J € VL. Then

/ DY, ¥)O1.; exp [Z AREDS wAf/i”}

AeE
= > sen(rr) (]_[ wA) [T (*+ D a-n]. 69
FeF(G) AeF @: [INV (F,)|=0 i€V (Fy)
F~(1,])
F=(F\,...F;)

where the sum runs over spanning hyperforests F in G, with components Fy, ..., Fy, that are
properly matched for (I, J), and V (Fy) is the vertex set of the hypertree Fy; here wy j.p is
the permutation of {1, ..., k} such that i, and jr lie in the same component F, for each r.

If we specialize (6.9) to ¢; = A for all vertices i, we obtain

Corollary 11. Let G = (V, E) be a hypergraph, let {wa}acr be hyperedge weights. and let
1,J € VL. Then

/ D, )0y exp [xziﬁiwi +> wAfé”}

A€E
= D sen(rp) (]_[ wA) A (6.10a)
FeF(G) AeF
F~(1,7)
w
= )VI-k Z sgn (7, y;r) (H )LA—lA—1> , (6.10b)
FeF(G) AeF
F~(I,])

where the sum runs over spanning hyperforests F in G that are properly matched for (1, J),
and k(F) is the number of connected components of F; here m ;. is the permutation of
{1, ..., k} such that i, and j, lie in the same component of F for each r.

This is the generating function of spanning hyperforests that are rooted at the vertices in
I, J and are otherwise unrooted, with a weight w4 for each hyperedge A and a weight A for
each unrooted connected component.

If, on the other hand, we specialize (6.3) to A = 0, we obtain

Corollary 6.5. Let G = (V, E) be a hypergraph, let {wa}ack be hyperedge weights, and let
1,J € VL. Then

/‘D(l/ﬁ ¥)Or,; exp |:Z AREDS wAf/io):|

AeE

= Z sgn(my j.r) <H wA) H Z L], (6.11)

FeF(G) AeF @: [INV(F,)|=0 \i€V(F,)
F~(I,J)
F=(Fy,....F¢)
where the sum runs over spanning hyperforests F in G, with components Fy, ..., Fy, that are

properly matched for (I, J), and V (Fy) is the vertex set of the hypertree F,; here w; j.F is
the permutation of {1, ..., k} such that i, and j ) lie in the same component F for each r.
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This is the generating function of rooted spanning hyperforests, with a weight w, for
each hyperedge A and a weight #; for each root i other than those in the sets 1, J.

Letus conclude by making some remarks about the normalized correlation function (O ;)
obtained by dividing (6.3) by (5.2). For simplicity, let us consider only the two-point function
(;¥;). We have

—1

(i) = <m,~ (A + > - A)) > (6.12)
kel (i)

where the expectation value on the right-hand side is taken with respect to the ‘probability

distribution’'3 on spanning hyperforests of G in which the hyperforest F = (F}, ..., F;) gets

weight

4
z! (HwA>l_[ e Y w—n|. (6.13)

AcF a=1 keV(F,)

vij denotes the indicator function

1 if i and j belong to the same component of F
vii = { J & p (6.14)

0 if not

and I'(/) denotes the vertex set of the component of F containing i. The factor
(A + D ket — )L))_1 in (6.12) arises from the fact that in (5.10) each component gets a
weight A+, er() (tx — A), while in (6.9) only those components other than the one containing
i and j get such a weight. So in general the correlation function (y;v;) is nor simply equal
to (or proportional to) the connection probability (y;;). However, in the special case of
corollaries 5.5 and 6.4—namely, all #; = A, so that we get unrooted spanning hyperforests
with a ‘flat” weight X for each component—then we have the simple identity

(W) = 27 (). (6.15)

Combinatorial identities generalizing (6.15), and their relation to the Ward identities arising
from the OSP(1]2) supersymmetry, will be discussed elsewhere [31].

7. The role of OSP(1]|2) symmetry

In [12] we have shown how the fermionic theory (1.7) emerges naturally from the expansion
of a theory with bosons and fermions taking values in the unit supersphere in R'"?, when the
action is quadratic and invariant under rotations in OSP(1]2). Here we would like to discuss
this fact in greater detail and extend it to the hypergraph fermionic model (5.12).

We begin by introducing, at each vertex i € V, a superfield n; := (o;, ¥;, ¥;) consisting
of a bosonic (i.e., real) variable o; and a pair of Grassmann variables v;, V;. We equip the
‘superspace’ R'”? with the scalar product

n; ;= 0;0; + A9 — Yir)), (7.1

where A # 0 is an arbitrary real parameter.
The infinitesimal rotations in R'/? that leave invariant the scalar product (7.1) form the
Lie superalgebra osp(1]2) [41-43]. This algebra is generated by two types of transformations:

13 We write ‘probability distribution” in quotation marks because the ‘probabilities’ will in general be complex. They
will be true probabilities (i.e., real numbers between O and 1) if the hyperedge weights w4 are nonnegative real
numbers.
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firstly, we have the elements of the sp(2) subalgebra, which act on the field as n; = n; + 6n;
with

do; =0 (7.2a)
8y = —a + vV, (7.2b)
8V = +ayr; + By (7.2¢)

where «, 8, y are bosonic (Grassmann-even) global parameters; it is easily checked that these
transformations leave (7.1) invariant. Secondly, we have the transformations parametrized by
fermionic (Grassmann-odd) global parameters ¢, €:

So; = —AV2(EW; +,€) (7.3a)
8wi = )»_1/260'1' (73b)
8y, = A" 2eéo;. (7.3¢)

(Here an overall factor A~!/? has been extracted from the fermionic parameters for future
convenience.) To check that these transformations leave (7.1) invariant, we compute

8(m; +m;) = (80;)0; +0;(80;) + ALY )Y + ¥, (8v) — V)V, — ¥i(8Y )] (7.4a)

= A2 + g0 — NP EY; + T e)o
+ 1 2[eyj0; + ¥ €0) — €V jo; — Yriéaj] (7.4b)
—0. (7.4¢)

In terms of the differential operators §; = 9/dy; and 9; = 3/dV;, the transformations
(7.2) can be represented by the generators

Xy = Z(%gi — i 0;) (7.5q)
ieV

X, = Z U, 0; (7.5b)
ieV

X_ =) id; (7.5¢)
ieV

corresponding to the parameters «, 3, v, respectively, while the transformations (7.3) can be
represented by the generators

-0
0. :A*I/ZZmai +k1/221ﬂia—o_i (7.6a)
ieV ieV
- il
0_ =223 "6:0; =212y "y, — (7.6b)
iEZV 162\/: 80’,’

corresponding to the parameters e, €, respectively. (With respect to the notations of [43]
we have X4 = Ly, Xo = —2Lp and Q4+ = F2iR;.) These transformations satisfy the
commutation/anticommutation relations
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[Xo, X1]=£2X4 [X:, X_]=Xp (7.7a)
(O, O+} =+2X 4 {0+, 0 }=Xo (7.7b)
[Xo, O+ ==£0=+ [X+,0+]1=0 [X+, O]1=—-0+ (7.7¢)

Note in particular that X3 = +02% and Xo = Q,Q_ + Q_Q,. It follows that any element
of the Grassmann algebra that is annihilated by Q. is also annihilated by the entire osp(1|2)
algebra.

Now let us consider a o-model in which the superfields n; are constrained to lie on the
unit supersphere in R', i.e., to satisfy the constraint

n-n; = ol + 200,y = 1. (7.8)
We can solve this constraint by writing
o = £(1 = 20" = £(1 = hip ), (7.9)

exploiting the fact that wl? = 1}? = 0. Letus henceforth take only the + signin (7.9), neglecting
the other solution (the role played by these neglected Ising variables will be considered in
more detail elsewhere [30]), so that

o; = 1-— )\.lpllﬂ, (710)

We then have a purely fermionic model with variables ¥, ¥ in which the sp(2) transformations
continue to act as in (7.2) while the fermionic transformations act via the ‘hidden’
supersymmetry

8y = A e(1 — Mg, 9) (7.11a)
89, = A1PE(l — Ay ). (7.11b)

All of these transformations leave invariant the scalar product
nen; =1-AY; _‘pj)(wi—‘/fj)+)\2¢i1ﬁilpj‘ﬁj' (7.12)

The generators Q. are now defined as

Q. =223 A=A y)d = 2720 — A2 g, (7.13a)
eV ieV

Q=223 A = APy = 47125 = AP s (7.13b)
ieV ieV

where we recall the notations d = Y ;_, d; and d = Y, 9.

Let us now show that the polynomials /9) defined as in (4.5) are OSP(1]|2)-invariant,

i.e. are annihilated by all elements of the osp(1|2) algebra. As noted previously, it suffices to
show that f/i’\) are annihilated by Q. Applying the definitions (7.13), we have

O_t4 =223, (7.14)
and hence

0.0_t4 =21710314 — |Al14, (7.15)
so that

M — A1+ 0.0 )14 (7.16)
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).
A

The next step is to compute Q. : since

0.(1+0.0)=0,+0,0_=0.+X,0_
=0:++[X, 0140 X4 =0, —0+:+0 X, =0 X, (7.17)

by the relations (7.7b)/(7.7¢), while it is obvious that X, 74 = 0, we conclude that O, f/ik) =0,

ie. f ?) is invariant under the transformation Q.. A similar calculation of course works for
Q7 14

In fact, the OSP(1|2)-invariance of f IY) can be proven in a simpler way by writing f y)
explicitly in terms of the scalar products m; - n; for i, j € A. Note first that

FON = A 0+ W — B )W — ) (7.184)
= %(1 —n; -nj) (7.18b)
_ (m; —n))?
= === (7.18¢)

By corollary 4.3, we obtain

1
f{“) . (1—n;-n,)(1—ny,m;) - (1 —my, -n;,) (7.19a)

i) k=1

1

= W(nil — niz)z(niz — Il,‘3)2 s (Il,‘ki1 — n[k)z. (719b)
Note the striking fact that the right-hand side of (7.19) is invariant under all permutations of
i1, ..., I, though this fact is not obvious from the formulae given, and is indeed false for
vectors in Euclidean space RY with N # —1. Moreover, the path iy, ..., i that is implicit on
the right-hand side of (7.19) could be replaced by any tree on the vertex set {i, ..., ix}, and
the result would again be the same (by corollary 4.3).

It follows from (7.18)/(7.19) that the subalgebra generated by the scalar products n; - n;
for i, j € V is identical with the subalgebra generated by f j” for A C V, for any A # 0.
Therefore, the most general OSP(1]2)-symmetric Hamiltonian depending on the {n;};cy is
precisely the one discussed in the remark at the end of section 5, namely in which the action

contains all possible products fcm =11, f (2) , where {C,} is a partition of V.

)

In appendix A we will prove a beautiful alternative formula for Jivin i)

1
) —
Sivinin) = A= det M (7.20)
where M is the k x k matrix of scalar products M,; = n;, - n,, . In this formula, unlike (7.19),
the symmetry under all permutations of iy, . . ., i; is manifest. We remark that the determinant
of a matrix of inner products is commonly called a Gram determinant ([44], p 110).
Finally, we need to consider the behavior of the integration measure in (5.2), namely

Dy, ¥) = [ | dyi dr; &7V, (7.21)

ieV

14 We are grateful to an anonymous referee for suggesting this proof. An alternate proof that Q. fly‘) = 0, based

on direct calculation using the definition (4.2) of f /(\M, can be found in the first preprint version of this paper

(0706.1509v1): see equations (7.8)—(7.11) there.
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under the supersymmetry (7.11). In general this measure is not invariant under (7.11), but in
the special case ; = A for all 7, it is invariant, in the sense that

/ Dya (W, ) SF (Y ) = 0 (7122)

for any function F(y, V). Indeed, Dy, (¥, ¥) is invariant more generally under local
supersymmetry transformations in which separate generators ¢;, €; are used at each vertex
i. To see this, let us focus on one site i and write F(, ) = a + by + cr; + dyr;
where a, b, ¢, d are polynomials in {v;, U j} j=i (which may contain both Grassmann-even
and Grassmann-odd terms). Then,

SF = A\[bejo; + c&io; + d(Eio; Y + V,€107)] (7.23a)
= o, A2 [be; + c& + d (& + V,€)]. (7.23b)

Since o; = e *Vi¥i this cancels the factor e%¥i¥i from the measure (since #; = A) and the
integral over dy; dy/; is zero (because there are no v;y; monomials). Thus, the measure
Dy (Y, ) is invariant under the local supersymmetry at site i whenever #; = A. If this occurs
for all i, then the measure is invariant under the global supersymmetry (7.3).

The OSP(1|2)-invariance of Dy ; (¥, 1) can be seen more easily by writing the manifestly
invariant combination

8(nf — 1)dn; = §(07 + 22, ¥; — 1) doy dy; (7.24a)
= eVis(0r — (1 — A, ¥)) doy dyp; A, (7.24b)

where the factor e*¥i¥i comes from the inverse Jacobian. Integrating out o; from (7.24), we
obtain e*Vi¥i dy; dif;.

As a consequence of (7.19b) and (7.24b), the generating function (5.20) for spanning
hyperforests in a k-uniform hypergraph can be rewritten as

Z (]‘[ wA> Ak<F>=/(]_[5(n,?—1)dni>

FeF(G) \AeF ieV

1 Li,...i
T 2 sy ) e —m) e (o - )’
itroir€V

.....

(7.25)

In the special case k = 2, this result appears in [12].

8. Conclusions

In this paper we have applied techniques of Grassmann algebra, first used in [12] to obtain
the generating function of spanning forests in a graph—generalizing Kirchhoff’s matrix-
tree theorem—to a wider class of models associated with hypergraphs. The key role in
our analysis is played by a set of simple algebraic rules (lemma 4.1) that express, in a
certain sense, the fermionic—bosonic cancellation associated with the underlying OSP(1|2)
supersymmetry. This algebraic approach allows for notably simplified proofs and for strong
generalizations.
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In particular, we are able to obtain combinatorial interpretations in terms of spanning
hyperforests for the partition function (section 5) and correlation functions (section 6) of
a fairly general class of fermionic models living on hypergraphs. In that subset of the
results where the OSP(1]2) supersymmetry is preserved, the combinatorial weights of the
hyperforest configurations become (perhaps not surprisingly) notably simpler. Among other
things, we obtain the generating function of unrooted spanning hyperforests on a weighted
hypergraph (together with a family of relevant combinatorial observables) as an OSP(1|2)-
invariant fermionic integral.

Finally, in appendix B we present a graphical formalism for proving both the classical
matrix-tree theorem and numerous extensions thereof, which can serve as an alternative to the
algebraic approach used in the main body of this paper and which we hope will have further
applications.

In a follow-up paper [39] we shall study in more detail the Grassmann subalgebra that is
generated by the elements f/ik) as A ranges over all nonempty subsets of V.

Itis also natural to ask about extensions of this work in which combinatorial interpretations
are obtained for statistical-mechanical models with other supersymmetry groups. We are
currently studying models with OSP(1]2n) and OSP(2|2) supersymmetries and hope to report
the results in the near future.
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Appendix A. A determinantal formula for fX‘)

The main purpose of this appendix is to prove the determinantal formula (7.20) for f fik). Along

the way we will obtain a rather more general graphical representation of certain determinants.

Let A = (a;j); ;= be a matrix whose elements belong to a commutative ring R. The
determinant is defined as usual by
n
detA = Z sgn(n)nam(i), (A.1)
nell, i=1
where the sum runs over permutations m of [rn] = {l,...,n}, and sgn(w) =

(—1)#(evencyclesof 7) iq the sign of the permutation 7.
We begin with a formula for the determinant of the sum of two matrices in terms of
minors, which ought to be well known but apparently is not'>:

15 This formula can be found in ([45], pp 162-3, exercise 6) and ([46], pp 221-3). It can also be found—albeit in an
ugly notation that obscures what is going on—in ([45], pp 145-6 and 163—4), ([47], pp 31-3), ([48], pp 281-2); and
in an even more obscure notation in ([49], p 102, item 5). We remark that an analogous formula holds (with the same
proof) in which all three occurrences of determinant are replaced by permanent and the factor € (/, J) is omitted.
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Lemma A.1. Let A and B be n x n matrices whose elements belong to a commutative ring R.
Then'®

det(A+B)= Y (I, J)(det Ay)(det Byeye), (A.2)

I,JC[n]
=]

wheree(l, J) = (—1 )Eg, *Xjer T s the sign of the permutation that takes 11¢ into J J¢ (where
the sets 1, 1€, J, J¢ are all written in increasing order).

Proof. Using the definition of determinant and expanding the products, we have
det(A+B) =Y sgn(m) Y [ [aire) [ | bezor- (A.3)
rell, IC[n] iel tel¢

Define now J = m[/]. Then we can interchange the order of summation:

det(A+B)= Y > sgn(m) [ [aix) [ | bewcor- (A.4)

1,JC[n] mell, iel el
[=|J| mll]=J
Suppose now that |I| = |J| = k, and let us write I = {i},..., it} and J = {ji,..., ji}
where the elements are written in increasing order, and likewise 1¢ = {¢;,...,£,_x} and
J={my,...,m,_;}. Letw’ € Iy and n” € T1,,_; be the permutations defined so that
n(ia) = jp <> 7'(a) = B (A.5a)
T(ly) =mpg «— 7" (a) = B. (A.5b)

It is easy to see that sgn(r) = sgn(w’) sgn(w”)e(l, J). The formula then follows by using
twice again the definition of determinant. (]

Corollary A.2. Let A and B be n x n matrices whose elements belong to a commutative ring
R. Then det(A + AB) is a polynomial in A of degree at most rank(B), where ‘rank’ here means
determinantal rank (i.e. the order of the largest nonvanishing minor).

Proof. This is an immediate consequence of formula (A.2), since all minors of B of size larger
than its rank vanish by definition. ]

Next recall the traditional graphical representation of the determinant:

Lemma A.3. Let C = (cij)} ;_, be a matrix whose elements belong to a commutative ring R.
Then,

det(~C) = Y (~pf@eteor @ TT ¢ (A.6)
G ijeE(G)
where the sum runs over all permutation digraphs G on the vertex set {1,2,...,n}, ie, all

directed graphs in which each connected component is a directed cycle (possibly of length 1).

Proof. This is an immediate consequence of (A.1) and the fact that (—1)#evencyclesofm) —
(_ l)#(cycles of ) (_ 1)#(0dd cycles of ) . O

Now leta = (a;)7_, and b = (b;)7_, be a pair of vectors with elements in the ring R. The
main result of this appendix is the following generalization of lemma A.3:

16 The determinant of an empty matrix is of course defined to be 1. This makes sense in the present context even if the
ring R lacks an identity element: the term / = J = ¢ contributes det B to the sum (A.2), while the term I = J = [n]
contributes det A.
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Lemma A4. Let C = (c;))} j=1 be amatrix whose elements belong to a commutative ring R,
and let a = (a;)!_, and b = (b;)}_, be vectors with elements in R. Then,

det(ab” — C) = det(—C) + Z( DAt Op - az [ e AD

IJGE(G)
where the sum runs over all directed graphs G on the vertex set {1,2,...,n} in which one
connected component is a directed path (possibly of length 0, i.e. an isolated vertex) from

source s(é) to sink t(é) and all the other connected components are directed cycles (possibly
of length 1).

Proof. Introduce an indeterminate A and let us compute det(Aab” — C), working in the
polynomial ring R[A], by substituting ¢;; — Aa;b; in place of ¢;; into (A.6). The term of order
10 is det(—C), which is given by (A.6). In the term of order Al one edge ij in G carries a
factor —a;b; and the rest carry matrix elements of C. Setting G' = G~ij J, we see that G’ has
one less cycle than G 7 [thereby canceling the minus sign] and has a path running from source
s(G ) = j to sink t(G ) = i. Dropping the prime gives (A.7). Terms of order A and higher
vanish by corollary A.2 because ab” has rank 1. (]

Corollary A.5. Let C = (c;))} j=1 be a matrix whose elements belong to a commutative
ring-with-identity-element R and let E be the n x n matrix with all elements 1. Then,

det(E — C) = det(—C) + Z( 1)y#(eyeles of G) [T < (A.8)
leE(G)
where the sum runs over all directed graphs G on the vertex set {1,2,...,n} in which one

connected component is a directed path (possibly of length 0, i.e. an isolated vertex) and all
the other connected components are directed cycles (possibly of length 1).

The following result is an immediate consequence of lemma A.3 and corollary A.5:

Corollary A.6. Let C = (¢;j)} =1 be a matrix whose elements belong to a commutative
ring-with-identity-element R and satisfy ci,i,Ciyi, - - * Ci,_,i,Cipiy = 0 for all iy, ... i (k > 1)

and let E be the n x n matrix with all elements 1. Then,
det(E — C) = Z ]_[ Cij» (A.9)
P ijeE(P)
where the sum runs over all directed paths P on the vertex set {1,2,...,n}. (There are n!
such contributions.)

Proof. The hypotheses on C lead to the vanishing of all terms containing at least one cycle
(including cycles of length 1). Therefore, the only remaining possibility is a single directed
path. ]

Let us now specialize corollary A.6 to the case in which the commutative ring R is the
even subalgebra of our Grassmann algebra, and the matrix C is given by

Cii = 0 (AIO)
cij = cji =My, for i j. (A.11)
The hypothesis c¢;,i,¢ii, - - - i, i, Civiy, = 0 is an immediate consequence of corollary 4.3.

Moreover, by equation (7.18b) we have (E — C);; = n; - n;. In the expansion (A.9) we obtain

n! terms, each of which is of the form A"~ times [];; ) f , for some directed path P on
)

.....

the vertex set {1, 2, ..., n}. But by corollary 4.3, each such product equals f] ® 5o this
A)

.....

proves the determinantal formula (7.20) for fj ¢
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Appendix B. Graphical proof of some generalized matrix-tree theorems

In this appendix we shall give a ‘graphical’ proof of the classical matrix-tree theorem as well
as a number of extensions thereof, by interpreting in a graphical way the terms of a formal
Taylor expansion of an action belonging to the even subalgebra of a Grassmann algebra. (We
require the action to belong to the even subalgebra in order to avoid ordering ambiguities
when exponentiating a sum of terms.) Some of these extensions of the matrix-tree theorem
are already set forth in the main body of this paper, where they are proven by an ‘algebraic’
method based on lemma 4.1 and its corollaries. Other more exotic extensions are described
here with an eye to future work; they could also be proven by suitable variants of the algebraic
technique.

Curiously enough, it turns out that the more general is the fact we want to prove, the
easier is the proof; indeed, the most general facts ultimately become almost tautologies on the
rules of Grassmann algebra and integration. The only extra feature of the most general facts
is that the ‘zoo’ of graphical combinatorial objects has to become wider (and wilder).

So, in this exposition we shall start by describing the most general situation, and then
show how, when special cases are chosen for the parameters in the action, a corresponding
simplification also occurs in the combinatorial interpretation.

B.1. General result

Consider a hypergraph G = (V, E) as defined in section 2, i.e. V is a finite set and E is a set
of subsets of V, each of cardinality at least 2, called hyperedges. As usual we introduce a pair
¥;, ¥, of Grassmann generators for each i € V. We shall consider actions of the form

SW.¥) =Y Sa(. ), (B.1)
A€eE
where
Sa(Y, ¥) = wita + Z WA Tai + Z Waij Vil Ta i) (B.2)
i€A i,jeA
i#]

andty =[], cA ¥, ¥;. We notice here that the form (B.2) resembles the definition (4.2) of /i)\):
the same monomials appear, but now each one is multiplied by an independent indeterminate.
Thus, for each hyperedge A of cardinality k we have k> + 1 parameters: wh, {wailiea and
{wa.i j}izj)ea.- [We have chosen, for future convenience, to write the last term in (4.2) as
+V;/ ; rather than —, ;]

Note that, for |A| > 2, all pairs of terms in S4 (1, ¥) have a vanishing product, because
they contain at least 2(2|A| — 2) = 4|A| — 4 fermions in a subalgebra (over A) that has only
2| A| distinct fermions. As a consequence, we have in this case

exp[Sa(¥, ¥)] = 1+ Sa(y, V). (B.3)
On the other hand, if |A| = 2 (say, A = {i, j}), we have two nonvanishing cross-terms:

(Wi ¥ W) (Waj ¥ i) = waiwa ¥, Wi ;¥ (B.4a)

WA iV ) (Wa iV ¥) = —wasijwa i ¥ Vil ¥ (B.4b)

where the minus sign comes from the commutation of fermionic fields. So we can write in
the general case

explSa(y, ¥)]1 = 1+ 84 (¥, ¥), (B.5)
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where S, (¢, ¥) is defined like S4 (¥, ¥) but with the parameter w* replaced by

WH+ WA WA — WA WA ji if A=1{i,j
@Z: A A;iWaA;j A;ijWA;j . {i, j} (B.6)
Wi it |A] > 3.
Consider now a Grassmann integral of the form
f DY, ¥)O; s exp [Z G+ ) Sa(y, &)} : (B.7)
i AcE
where t = (f;);cy are parameters, I = (i1, is, ...,ix) € VKand J = (ji, jo, ..., jx) € V¥ are
ordered k-tuples of vertices, and
OI,J = 1/_/1']1/[]'1 ""inkwjk (BS)
[cf (6.1)]. Here the iy, ..., i, must be all distinct, as must the ji, ..., ji, but there can be
overlaps between the sets | = {iy, iy, ..., i} and J = {ji, jo, ..., jk}.17 We intend to show

that (B.7) can be interpreted combinatorially as a generating function for rooted oriented'®
spanning sub(hyper)graphs of G, in which each connected component is either a (hyper-)tree
or a (hyper-)unicyclic. In the case of a unicyclic component, the rest of the component is
oriented toward the cycle, and no vertex from | U J lies in the component. In the case of a
tree component, either (a) no vertex from | U J is in the component, and then there is either a
special ‘root’ vertex or a ‘root’ hyperedge, all the rest of the tree being oriented toward it or
(b) the component contains a single vertex from | N J, which is the root vertex, and the tree
is again oriented toward it or (c) the component contains exactly one vertex from | and one
from J, a special oriented path connecting them, and all the rest is oriented toward the path.
The weight of each configuration is essentially the product of #; for each rooti ¢ | U J and an
appropriate weight (W%, wa.; or wy.;;) for each occupied hyperedge, along with a — sign for
each unicyclic using wy;;;’s and a single extra 4= sign corresponding to the pairing of vertices
of | to vertices of J induced by being in the same component. (This same sign appeared already
in section 6.)

Kirchhoff’s matrix-tree theorem arises when all the hyperedges A have cardinality 2 (i.e.
G is an ordinary graph), | = J = {ip} for some vertex iy, all ; = 0, all w} = 0, and
Wy;; = Wa;ij = Wa. The principal-minors matrix-tree theorem is obtained by allowing | = J
of arbitrary cardinality k, while the all-minors matrix-tree theorem is obtained by allowing
also | # J. Rooted forests with root weights #; can be obtained by allowing #; # 0. On

the other hand, unrooted forests are obtained by taking all t; = A, | =J = ¥, wji = —Awy
and the rest as above. [More generally, unrooted hyperforests are obtained by taking all
ti = Al =Jd =0, w; = —A(A| — 1)w, and the rest as above.] The sequences / and J

are used mainly in order to obtain expectation values of certain connectivity patterns in the
relevant ensemble of spanning subgraphs.

Let us now prove all these statements and give precise expressions for the weights of the
configurations, which until now have been left deliberately vague in order not to overwhelm
the reader.

We start by manipulating (B.7), exponentiating the action to obtain

/ D, ¥)O;, (H(l +r,«ﬁ,«/f,-)> (1‘[(1 +§A)> (B.9)

ieV A€E
17 Note the distinction between the ordered k-tuple I = (i, i, ..., ix), here written in italic font, and the unordered
set | = {iy, i, ..., ir}, here written in sans-serif font.

18 We shall define later what we mean by ‘orienting’ a hyperedge A: it will correspond to selecting a single vertex
i € A as the ‘outgoing’ vertex.
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Table B1. Graphical representation of the various factors in the expansion (B.10).

Factors coming from Oy juy’

Vi le® Root vertex
v, to Sink vertex
Vi ? X Source vertex

Factors coming from [ Sy

A
TA Root hyperedge

TANI Pointing hyperedge

Vil ;Ta (i) Dashed hyperedge

or, expanding the last products,

> ([T#) [ o pomw (T18). (B.10)

V'cv~(ud)y \ieV’ AcE’
E'CE

where 1 U V' consists of the sequence / followed by the list of elements of V’ in any chosen
order and J U V' consists of the sequence J followed by the list of elements of V’ in the same
order.

We now give a graphical representation and a fancy name to each kind of monomial in
the expansion (B.10), as shown in table B1. Note that in this graphical representation a solid
circle e corresponds to a factor v/;v;, an open circle o corresponds to a factor v/; and a cross
x corresponds to a factor ;.

According to the rules of Grassmann algebra and Grassmann—Berezin integration, we
must have in total exactly one factor v; and one factor v; for each vertex i. Graphically this
means that at each vertex we must have either a single (o) or else the superposed pair (®) (note
that in many drawings we actually draw the (o) and (x) slightly split, in order to highlight
which variable comes from which factor). At each vertex i we can have an arbitrary number
of ‘pointing hyperedges’ pointing toward i, as they do not carry any fermionic field:

T i,

Aside from pointing hyperedges, we must be, at each vertex 7, in one of the following situations
(figure B1):
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(1b)

(4b)

(4¢)

Figure B1. Possible ways of saturating the Grassmann fields on vertex i (indicated by the small
gray disc).

(D Ifi € V'ori € INJ [resp. cases (a) and (b) in the figure], the quantity O;uy' Uy
provides already a factor ¥;1;; therefore, no other factors of ¥r; or v; should come from
the expansion of []S,.

(2) If i € INJ, the quantity O;yy-_juy: provides already a factor ;; therefore, the expansion
of [] S, must provide ¥;, i.e. we must have one dashed hyperedge pointing from i.

(3) If i € J\I, the quantity Oy juys provides already a factor v;; therefore, the expansion
of [] S, must provide v/, i.e. we must have one dashed hyperedge pointing toward i.

(4) Ifi ¢ 1UJU V/, then the quantity O;uy suy provides neither ¥, nor v;; therefore, the
expansion of ] S, 4 must provide both ¥r; and ;, so that at i we must have one of the
following configurations:

(a) a non-pointed vertex of a pointing hyperedge;

(b) a vertex of a dashed hyperedge that is neither of the two endpoints of the dashed
arrow;

(c) a vertex of a root hyperedge;

(d) two dashed hyperedges, one with the arrow incoming, one outgoing.

Having given the local description of the possible configurations at each vertex i, let us
now describe the possible global configurations. Note first that at each vertex we can have
at most two incident dashed arrows, and if there are two such arrows then they must have
opposite orientations. As a consequence, we see that dashed arrows must either form cycles
or else form open paths connecting a source vertex of I\.J to a sink vertex of Jx\.I. Let us use
the term root structures to denote root vertices, root hyperedges, cycles of dashed hyperedges
and open paths of dashed hyperedges.

As for the solid arrows in the pointing hyperedges, the reasoning is as follows: if a
pointing hyperedge A points toward i, then either i is part of a root structure as described
above or else it is a non-pointed vertex of another pointing hyperedge ¢(A). We can follow
this map iteratively, i.e. go to ¢(¢(A)) and so on:

A A=
P
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: X

root vertex root hyperedge

source-to-sink path of dashed hyperedges

A=4'(4)

;} ¢<A)%<>‘ =
} ¢2<A>Zz<%)

cycle of dashed hyperedges cycle of pointing hyperedges

Figure B2. The five kinds of root structures.

Because of the finiteness of the graph, either we ultimately reach a root structure or we enter a
cycle. Cycles of the ‘dynamics’ induced by ¢ correspond to cycles of the pointing hyperedges.
We now also include such cycles of pointing hyperedges as a fifth type of root structure (see
figure B2 for the complete list of root structures).

All the rest is composed of pointing hyperedges, which form directed arborescences,
rooted on the vertices of the root structures. In conclusion, therefore, the most general
configuration consists of a bunch of disjoint root structures, and a set of directed arborescences
(possibly reduced to a single vertex) rooted at its vertices, such that the whole is a spanning
subhypergraph H of G.

As each root structure is either a single vertex, a single hyperedge, a (hyper-)path or
a (hyper-)cycle, we see that each connected component of H is either a (hyper-)tree or a
(hyper-)unicyclic. Furthermore, all vertices in | U J are in the tree components, and each tree
contains either one vertex from | and one from J (possibly coincident) or else no vertices at all
from | U J.

We still need to understand the weights associated with the allowed configurations.
Clearly, we have a factor w,.; per pointing hyperedge in the arborescence. Root vertices
coming from V' have factors #; and root hyperedges have factors w%. Cycles y =
(ig, A1, 11, Az, ..., iy = ip) of the dynamics of ¢ (bosonic cycles) have a weight
WAy, -+ - Wa,,- All the foregoing objects contain Grassmann variables only in the
combination v;v;, and hence are commutative. Finally, we must consider the dashed
hyperedges, which contain ‘unpaired fermions’ v; and v j» and hence will give rise to signs

coming from anticommutativity. Let us first consider the dashed cycles y = (io, A1, i1,
Ay, ..., ig = o), and note what happens when reordering the fermionic fields:
(wAI;ililwié,wh)(wAZ;ilizwilWiz) T (wAliiL—liniK—lll/iz)

= —WAiin WAyii ** Wagi i Vi, Vi - Wi, Vi (B.11)

because ;, had to pass through 2¢ — 1 fermionic fields to reach its final location. This is pretty
much the result one would have expected, but we have an overall minus sign, irrespective of
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the length of the cycle (or its parity), which is in a sense ‘non-local’, due to the fermionic
nature of the fields v and . For this reason we call a dashed cycle a fermionic cycle.

A similar mechanism arises for the open paths of dashed hyperedges y =
(ip, Ay, i1, Ay, ..., 1p), where iy is the source vertex and i, is the sink vertex. Here the
weight WAzigiy WAsinia *** WA iy multiplies the m9n0mial wioWil wil 1z/fiz wiz U wi[_] %4 wiw
in which the only unpaired fermions are v;, and ¥, , in this order. Now the monomials for
the open paths must be multiplied by O; ;, and each source (resp. sink) vertex from an open
path must correspond to a vertex of | (resp. J). This pairing thus induces a permutation of
{1,...,k}, where k = |lI| = |J|, namely, i, is connected by an open path to j (). We then have

k k
(]_[ v m) (]_[ i, ¥ ,-,,(,)> : (B.12)
r=I1 r=I1

where the first product is O; ; and the second product comes from the open paths. This can
easily be rewritten as

k k
1_[ 1/_[,',. I/fj,. Wi,. lpjnm = 1_[ Kpi, Wi,‘/_fj,,(,) I/f_j,. (B.13a)
r=1

r=1

k k
= ( %%) (H %,[(,)wj,) (B.13b)
r=1 r=I

k

k
= sgn() (]_[ 7, 1/&,) ( 7, m) : (B.13¢)
r=1 r=1

Putting everything together, we see that the Grassmann integral (B.7) can be represented
as a sum over rooted oriented spanning subhypergraphs H of G as follows:

e Each connected component of H (the unoriented subhypergraph corresponding to H)is
either a (hyper-)tree or a (hyper-)unicyclic.

e Each (hyper-)tree component contains either one vertex from | (the source vertex) and
one from J (the sink vertex, which is allowed to coincide with the source vertex) or else
no vertex from | U J. In the latter case, we choose either one vertex of the component to
be the root vertex or else one hyperedge of the component to be the root hyperedge.

e Each unicyclic component contains no vertex from | U J. As a unicyclic, it necessarily
has the form of a single (hyper-)cycle together with (hyper-)trees (possibly reduced to a
single vertex) rooted at the vertices of the (hyper-)cycle.

e Each hyperedge other than a root hyperedge is oriented by designating a vertex i (A) € A
as the outgoing vertex. These orientations must satisfy following rules:

(i) each (hyper-)tree component is directed toward the sink vertex, root vertex or root
hyperedge,
(ii) each (hyper-)tree belonging to a unicyclic component is oriented toward the cycle
and
(iii) the (hyper-)cycle of each unicyclic component is oriented consistently.
Thus, in each (hyper-)tree component the orientations are fixed uniquely, while in each
unicyclic component we sum over the two consistent orientations of the cycle.

The weight of a configuration H is the product of the weights of its connected components,
which are in turn defined as the product of the following factors:



Grassmann integral representation for spanning hyperforests 13833

e Each root vertex i gets a factor ;.

e Each root hyperedge A gets a factor w.

e Each hyperedge A belonging to the (unique) path from a source vertex to a sink vertex
gets a factor wy;;;, where j is the outgoing vertex of A and i is the outgoing vertex of the
preceding hyperedge along the path (or the source vertex if A is the first hyperedge of the
path).

e Each hyperedge A that does not belong to a source—sink path or to a cycle gets a factor
wy.i(4) [recall that i (A) is the outgoing vertex of A].

e Each oriented cycle (i, Ay, i1, Aa, ..., i¢ = ip) gets a weight

t ¢
[Twsi = [Twasi . (B.14)
a=1 a=l1

e There is an overall factor sgn(7).

B.2. Special cases

The contribution from unicyclic components cancels out whenever ]_[fl:1 Wa, i, =
]_[f[=1 Wa,:i, i, for every oriented cycle (ip, Ay, i1, Az, ...,ip = ip). In particular, this
happens if wy,;;; = wy;; for all A and all i,j € A. More generally, it happens if
Wa;ij = Wa,j exp(¢a;ij) where ¢ has ‘zero circulation’ in the sense that Zi:l ba,iy i, =0
for every oriented cycle (ip, Ay, i1, Az, ...,I¢ = ip). Physically, ¢ can be thought of as a
kind of ‘gauge field’ to which the fermions v, W are coupled; the zero-circulation condition
means that ¢ is gauge-equivalent to zero. Note, finally, that if ws,;wa;; = wa;;jwa;;; for all
i,j € A, then w} = w}.

At the other extreme, if we take all r; = 0, all 1’172 =0and I = J = (J, then all tree
components disappear, and we are left with only unicyclics.

In certain ‘symmetric’ circumstances, we can combine the contributions from tree
components having the same set of (unoriented) hyperedges but different roots and obtain
reasonably simple expressions. In particular, suppose that the weights w,.; are independent
of i (let us call them simply w,), and consider a tree component 7 that does not contain any
vertices of | UJ. Then we can sum over all choices of root vertex or root hyperedge and obtain
the weight

]_[ W Z f + Z Vi . (B.15)

. waA
A€E(T) ieV(T) A€E(T)

A further simplification occurs in two cases:

e If all ; = ¢ and all W% = 0, then the second factor in (B.15) becomes simply ¢|V (T)|:
we obtain forests of vertex-weighted trees.

o Ifall f; =t and W’ = (1 — |A|)w, for all A, then the second factor in (B.15) becomes
simply ¢ (by virtue of proposition 2.1) and we obtain unrooted forests.

Recall, finally, that if we also take wy.;; = wy4 forall A and alli, j € A, then the unicyclic
components cancel and W} = w?, so that (B.15) reduces to (5.9).

It is instructive to consider the special case in which G is an ordinary graph, i.e. each
hyperedge A € E is of cardinality 2. If we further take all w} = 0, then the quantity in
the exponential of the functional integral (B.7) is a quadratic form S(y, ¥) + Y, ¥ ¥ =
Y M, with matrix

Mij _ {l‘i + Zk;ﬁi Wy k):k if i=j

e (B.16)
—Wyi,j); ji if i#j.
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Our result for / = J = {J then corresponds to the ‘two-matrix matrix-tree theorem’ of Moon

([5], theorem 2.1) with r;, = Wy k):k fori # k,r; =0, Sij = Wy, jhij fori # jands; = —t
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